DESTRESS

Demonstration of Soft Stimulation Treatments of Geothermal Reservoirs

Task 4.4: Simulation of the coupled processes

Guido Blöcher^{1,2}, Cees Willems², Jin Ma³, Kong Xiang-Zhao³, Mauro Cacace¹, Jean Schmittbuhl⁴

¹ GFZ German Research Centre for Geosciences, Potsdam, Germany ² School of Engineering, University of Glasgow, Scotland ³ Department of Earth Sciences, ETH Zurich, Swiss ⁴ EOST-IPGS, Université de Strasbourg/CNRS, Strasbourg, France

geothermal sites under investigation

- Klaipėda, LTU
- Westland, NLD
- Soultz-sous-Forêts, FRA
- Mezőberény, HUN

laboratory experiments

- gas pycnometer (Micromeritics AccuPyc II 1340) with helium
- Pore Size Distribution (PSD) by employing mercury intrusion porosimetry
- reactive flow through experiments

Pohang, KOR

numerical simulation

- Klaipėda, LTU: TH model of the geothermal system (canceled)
- Westland, NLD: THM model of the natural state (canceled)
- Soultz-sous-Forêts, FRA: HM(C) model of a partly sealed fault
- Mezőberény, HUN: H(C) model of the doublet system

| reservoir characterisation by reactive flow through experiments

	Vydmantai-1	Palanga-318	Mezobereny
Depth	954.6 m	981 m	1500 m
Reactive phase	Dolomite	Dolomite	Calcite
Dissolved volume	0.16 ml	0.09 ml	0.022 ml
Stimulation fluid	0.8 mol/L CO ₂ + 1 mol/L brine	0.8 mol/L CO ₂ + 1 mol/L brine	10 mmol/L HCL + 80 mmol/L brine
Injection time	270 h	455 h	250 h
Injection rate	1-2 ml/min	0.01 ml/min	0.01 ml/min
Initial porosity	21.9%	8.76%	9.39%
Final porosity	23.2%	9.73%	9.71%
Initial permeability	356 mD	12 µD	1.72 µD
Final permeability	139 mD	83 µD	1.68 µD

The acid stimulation on M1-1500 bring no increase in its permeability as one would expect. This might be because of the short-duration experiment (~250 hours). In contrast, the potential compaction and the release of fines particle might have caused the decrease in permeability.

| Impact of a partly sealed fault on hydraulic properties of a granite reservoir

Simulation of heterogeneous geothermal reservoirs

Results

• Flow pattern strongly influenced by porosity and permeability distribution • Injection/production mainly in/from areas of high conductive layers Potential

exists), a chemical treatment could

15000

• Estimation of well performance in heterogeneous reservoirs • Evaluation of doublet performance change due to chemical stimulation

References

[1] Cacace, M. and Jacquey, A. B.: Flexible parallel implicit modelling of coupled thermal{hydraulic{mechanical processes in fractured rocks, Solid Earth, 8, 2017. [2] Candela, T. and Renard, F. and Klinger, Y. and Mair, K. and Schmittbuhl, J. and Brodsky, E. E.: Roughness of fault surfaces over nine decades of length scales, Journal of Geophysical Research: Solid Earth, 117, 2009. [3] Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D Finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 2009. [4] Peterson, J. W., Lindsay, A. D., and Kong, F.: Overview of the incompressible Navier{Stokes simulation capabilities in the MOOSE framework, Advances in Engineering Software, 119, 2018. [5] Pyrak-Nolte, L. and Morris, J.: Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow, International Journal of Rock Mechanics and Mining Sciences, 37, 2000. [6] Bando, S., Takemura, F., Nishio, M., Hihara, E. and Akai, M.: Viscosity of Aqueous NaCl Solutions with Dissolved CO2at (30 to 60) °C and (10 to 20) MPa. Journal of Chemical & Engineering Data, 49(5), 2004. [7] MARSHALL, T.: A RELATION BETWEEN PERMEABILITY AND SIZE DISTRIBUTION OF PORES. Journal of Soil Science, 9(1), 1958.

> This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 691728

