Rittershoffen soft stimulations
Dr Clement Baujard

DESTRESS Mid Term Conference, Glasgow, 05th April 2018

Genter A., Maurer V., Hehn R., Dalmais E., Peterschmitt A., Vidal J.
Outline

• Rittershoffen site overview
• Rittershoffen operation feedback after 2 years heat production
• Rittershoffen in Destress
 • Hydrothermal properties of the reservoir
 • Detailed GRT-1 stimulation analysis
 • Stress drops analysis
Rittershoffen site overview
Rittershoffen site location

- Industrial geothermal site located in the Upper Rhine Graben, 8km east of Soultz-sous-Forêts
- Target: regional fault zone in granite basement
Rittershoffen site overview: 100% heat direct use

26 MWth
Production Temp.: 168°C
Operation flowrate: 270m³/h
Wells GRT-1 and GRT-2: completion and well trajectories
Wells GRT-1 and GRT-2: temperatures

Temperature profiles at equilibrium
Operation feedback after ~2 years use
Rittershoffen operation feedback last 21 months

- In operation since April 2016
- No felt seismicity

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of induced events in 2017</td>
<td>734</td>
</tr>
<tr>
<td>Max Magnitude (Mlv)</td>
<td>1.3</td>
</tr>
<tr>
<td>Max PGV (mm/s)</td>
<td>0.24 mm/s</td>
</tr>
</tbody>
</table>

11.05.2018
Rittershoffen operation feedback last 21 months

- In operation since April 2016
- Availability > 90%
- Estimated avoided CO2 emissions in 2017: 35 kTo

<table>
<thead>
<tr>
<th>Mois</th>
<th>Nbr arrêt</th>
<th>Durée totale d'arrêt</th>
<th>Heures de marche</th>
<th>Disponibilité centrale</th>
<th>Énergie th centrale</th>
<th>Énergie th fournie</th>
<th>Efficacité réseau</th>
<th>Puissance th moyenne</th>
<th>Émission CO2 évitée</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septembre</td>
<td>1</td>
<td>3 h</td>
<td>717 h</td>
<td>99.6 %</td>
<td>9 330 MWh<sub>n</sub></td>
<td>7 960 MWh<sub>n</sub></td>
<td>85.3 %</td>
<td>11.5 MWh<sub>n</sub></td>
<td>1 976 tCO₂</td>
</tr>
<tr>
<td>Octobre</td>
<td>2</td>
<td>8 h</td>
<td>736 h</td>
<td>98.9 %</td>
<td>10 652 MWh<sub>n</sub></td>
<td>9 080 MWh<sub>n</sub></td>
<td>85.2 %</td>
<td>12.7 MWh<sub>n</sub></td>
<td>2 254 tCO₂</td>
</tr>
<tr>
<td>Novembre</td>
<td>5</td>
<td>303 h</td>
<td>327 h</td>
<td>45.4 %</td>
<td>4 440 MWh<sub>n</sub></td>
<td>3 864 MWh<sub>n</sub></td>
<td>87.0 %</td>
<td>11.7 MWh<sub>n</sub></td>
<td>959 tCO₂</td>
</tr>
<tr>
<td>Décembre</td>
<td>2</td>
<td>132.5 h</td>
<td>611.5 h</td>
<td>82.2 %</td>
<td>9 271 MWh<sub>n</sub></td>
<td>8 181 MWh<sub>n</sub></td>
<td>88.2 %</td>
<td>13.6 MWh<sub>n</sub></td>
<td>2 031 tCO₂</td>
</tr>
<tr>
<td>Total 2016</td>
<td>10</td>
<td>536.5 h</td>
<td>2931.5 h</td>
<td>81.6 %</td>
<td>33 693 MWh<sub>n</sub></td>
<td>29 085 MWh<sub>n</sub></td>
<td>86.3 %</td>
<td>12.4 MWh<sub>n</sub></td>
<td>7 220 tCO₂</td>
</tr>
</tbody>
</table>

2017									
Janvier	1	10 h	728 h	97.8 %	13 654 MWh_n	12 583 MWh_n	92.2 %	17.3 MWh_n	3 124 tCO₂
Février	3	16.5 h	655.5 h	97.5 %	12 813 MWh_n	11 822 MWh_n	92.3 %	18.0 MWh_n	2 935 tCO₂
Mars	4	293.5 h	449.5 h	60.6 %	8 317 MWh_n	7 581 MWh_n	90.9 %	17.5 MWh_n	1 877 tCO₂
Avril	5	16 h	704 h	97.8 %	13 232 MWh_n	12 322 MWh_n	93.1 %	17.7 MWh_n	3 059 tCO₂
Mai	4	13.5 h	730.5 h	68.2 %	14 050 MWh_n	12 941 MWh_n	92.1 %	17.6 MWh_n	3 213 tCO₂
Juin	1	1.5 h	718.5 h	99.8 %	13 013 MWh_n	12 050 MWh_n	92.6 %	16.8 MWh_n	2 962 tCO₂
Juillet	2	223.5 h	520.5 h	70 %	9 161 MWh_n	8 233 MWh_n	89.9 %	16.4 MWh_n	2 044 tCO₂
Août	2	16 h	728 h	97.8 %	13 824 MWh_n	12 812 MWh_n	92.7 %	17.6 MWh_n	3 181 tCO₂
Septembre	2	4 h	716 h	99.4 %	15 345 MWh_n	14 030 MWh_n	91.4 %	19.6 MWh_n	3 484 tCO₂
Octobre	0	0 h	745 h	100 %	15 970 MWh_n	14 744 MWh_n	92.3 %	19.8 MWh_n	3 661 tCO₂
Novembre	4	19 h	701 h	97.4 %	12 456 MWh_n	11 230 MWh_n	90.2 %	16.6 MWh_n	2 788 tCO₂
Décembre	1	4 h	740 h	99.5 %	13 808 MWh_n	12 492 MWh_n	90.5 %	18.1 MWh_n	3 102 tCO₂
Total 2017	29	623.5 h	8136.5 h	92.9 %	155 642 MWh_n	142 820 MWh_n	91.7 %	17.8 MWh_n	35 461 tCO₂
Rittershoffen in Destress: reservoir characterization and detailed analysis of GRT-1 stimulation
GRT-1 stimulation sequence and injectivity index

- Initial injectivity x5
 - No felt events
 - Economic threshold reached
GRT-2 well testing sequence and injectivity index

11.05.2018
GRT-1 and GRT-2 hydraulic analysis

-> See details in Baujard et al. (2017), Geothermics

• No clear boundary effect to be seen on the hydraulic tests

• Circulation test performed:
 • Tracer breakthrough in 14 days
 • Pressure connection in 30 minutes
 • Downhole distance between open sections: 1200m

<table>
<thead>
<tr>
<th>Well</th>
<th>Dimensionless skin factor [-]</th>
<th>GRT-1</th>
<th>GRT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault</td>
<td>Hydraulic cond. [m·s⁻¹]</td>
<td>21.3</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Specific storage [m⁻¹]</td>
<td>-</td>
<td>2.9 · 10⁻⁶ (40m)</td>
</tr>
<tr>
<td>Matrix</td>
<td>Hydraulic cond. [m·s⁻¹]</td>
<td>6.1 · 10⁻⁸ (500m)</td>
<td>5.3 · 10⁻⁷ (500m)</td>
</tr>
<tr>
<td></td>
<td>Specific storage [m⁻¹]</td>
<td>7.2 · 10⁻⁷ (500m)</td>
<td>5.2 · 10⁻⁷ (500m)</td>
</tr>
</tbody>
</table>
Acoustic Image Logs comparison before and after stimulations in well GRT-1

-> See details in Vidal et al. (2016), Geophysical Journal International

- Quantification of the impact of different stimulations (thermal, chemical and hydraulic) on the different sections of well GRT-1
Pressure drop analysis

-> See details in Meyer et al. (2017) Stanford Geothermal Workshop

- Detailed analysis of hydraulic stimulation performances applied to fractured hard rocks in GRT-1 and pressure drops mechanism investigations

- Correlation of pressure drops and induced seismicity

- Proposition of a pressure drop mechanism and modelling of the process using CFRAC (McClure)
Lesson’s learned

• At a reservoir scale
 - Regional faults are flow zone in the Rhine Graben
 - Convection between to Muschelkalk and weathered granite
 - In-fault convection?

• Successful stimulation of GRT-1
 - Chemical stimulation impacted Triassic sandstones and basement permeability
 - Hydraulic stimulation impacted mostly basement permeability
 - Great injectivity increase of GRT-1
 - There is a link between pressure drops and seismicity (seismic clusters)
 - No relation between pressure drop amplitude and seismic magnitude could be highlighted
 - The CFRAC model seems to confirm the inferred mechanism
 - In any case, pressure drops are related with near-well phenomena (50-100m max)

• Operation
 - Continuous injectivity increase of injection well
 - LSP (Line shaft pumps) show good results for high temperature and high salinity fluids
 - Induced seismicity can be handled
 - High temperature corrosion and scaling inhibitors available

11.05.2018
On-going work

• Contribution to GRC 2018 submitted: “Experience learnt from a successful soft stimulation and operational feedback after 2 years geothermal power and heat production plants in Rittershoffen and Soultz-sous-Forêts (France)”, by Baujard et al.

• Contribution to EAGE 2018 submitted by Sosio et al. (SCHLUMBERGER)

• Paper preparation on GRT-1 induced seismicity catalogues, by Maurer et al.
Related publications

• Peer reviewed journals

• Reports
 - MEYER, G. (2016) Advanced analysis of the stimulation of GRT-1 geothermal well (Rittershoffen, France), ESG Report 16-0186, 78pp - Confidential

• EGC Conference

• Other Conference
 - VIDAL J., GENTER A., SCHMITTBUHL J., BAUJARD C., (2016). Hydraulic stimulation or low water injection in fractured reservoir of the geothermal well GRT-1 at Rittershoffen (France)?AGU Fall meeting, 12-16 December 2016, San Francisco, California, USA.
 - MEYER et al. (2017), “Analysis and numerical modelling of pressure drops observed during hydraulic stimulation of GRT-1 geothermal well (Rittershoffen, France)”, Stanford geothermal workshop, California

11.05.2018
Thank you very much for your attention

Acknowledgements

Site owners

H2020 European Project DESTRESS
Liability claim

The European Union and its Innovation and Networks Executive Agency (INEA) are not responsible for any use that may be made of the information any communication activity contains.

The content of this publication does not reflect the official opinion of the European Union. Responsibility for the information and views expressed in the therein lies entirely with the author(s).

DESTRESS is co-funded by

National Research Foundation of Korea (NRF)
Korea Institute for Advancement of Technology (KIAT)
Swiss State Secretariat for Education, Research and Innovation (SERI)