DESTRESS – General Assembly in Glasgow April 5 2018 Mid-Conference

Overview of the hydraulic stimulation activities at the Pohang site

Ki-Bok Min Department of Energy Resources Engineering Seoul National University

Demonstration of soft stimulation treatments of geothermal reservoirs

Introduction Pohang EGS project (2010 ~ now)

DESTRESS

SEOUL NATIONAL UNIVERSITY

- Site location: Pohang, South Korea
- Pohang EGS consortium (Dec 2010 24 Nov 2017*): NexGeo (leading organization), KIGAM, SNU, KICT, POSCO, INNOGEO (+ EU Horizon 2020 DESTRESS since Mar 2016)
- Geology ~ 2.4 km: sedimentary (semi-consolidated mudstone)
 - 2.4 km ~ : reservoir (granodiorite)
- Temperature: 140 °C @ 4.2 km (3 days after drilling)
- Boreholes: PX-1 (4,217 m), PX-2 (4,348 m)
- Nearby boreholes within 5 km:

a– BH-1 (1,100 m), BH-2 (1,504 m), BH-3 (920 m), BH-4 (2,383 m),

3D geological map of BH-1~4 and PX-1

Characterization from Rock Core Core description

- Extracted from depths of 4,217 m with 3.6 m length and 100 mm diameter
- Fracture frequency of 9.7/m and RQD of 50.8% (total 35 fractures)
- Core-disking appeared at the bottom of whole body (average thick: 12.3 mm)

Characterization from Rock Core Direct shear tests

- Stress dependency of properties
 - Normal stiffness

7.9 GPa/m (σ_n ~ 1.6-4.8 MPa) 14.0 GPa/m (σ_n ~ 4.8-8.0 MPa) 23.4 GPa/m (σ_n ~ 6.5-13.0 MPa)

Normal stiffness from hydraulic jacking from well (Park et al., 2018)

– Dilation angle

ষ,5~9°

ຈ Barton and Choubey (1977) suggested an empirical equation

$$\phi_d = \frac{1}{M} JRC \log(JCS/\sigma_n)$$

Trend line of dilation angle by normal stress

Kim, 2017, Integrated Estimation of In-situ Rock Stress at Pohang Geothermal Reservoir in Korea, PhD thesis, Seoul National University

Characterization from Rock Core Direct shear tests

- Stress estimation at PX-2
 - Acoustic emission test using Kaiser effect
 - ন্ধ No information about orientation

ন্ধ Uniaxial AE test using 3 sub-cores with 30° on same horizontal plane

ন্ন 3 maximum previous stresses (Kaiser stresses) from 3 sub-cores

ন্ধ Using stress transformation: S_{Hmax} = 117 MPa, S_{hmin} = 74 MPa

DESTRES

DESTRESS

SEOUL NATIONAL UNIVERSITY

In-situ stress in Korea from the World Stress Map

SEOUL NATIONAL UNIVERSITY

Stress estimation @ EXP-1

SEOUL NATIONAL UNIVERSITY

- Stress estimation at PX-2
 - Core disking analysis

ন্ধ Fracture information from CT scanning (KICT)

ন্ধ BEM modeling with FLAC3D

 $\approx S_{Hmax}/S_v/S_{hmin} = (1.05-1.2)/1.0/(0.7-0.8)$

Avg. thickness = 12.3 mm Disked core & scanned image (KICT)

Relationship between ratio of horizontal stresses & estimated thickness of disk

SEOUL NATIONAL UNIVERSITY

Integrated stress estimation at PX-1, 2

Hydraulic Stimulation 1st stimulation (PX-2 1st Jan 29 - Feb 20, 2016)

SEOUL NATIONAL UNIVERSITY

PX-2

stimulation

- Max. wellhead pressure: 89.2 MPa (= bottomhole pressure 131.8MPa)
- Max. injection rate: 46.8 L/sec
- Injected water volume: 1,970 m³
- Max. seismicity magnitude: $M_L 1.7$
- # seismic events: 271 (Jan 29 Feb 24, 2016)

Hydraulic Stimulation 1st stimulation (PX-2 1st Jan 29 - Feb 20, 2016)^{ESTRESS}

SEOUL NATIONAL UNIVERSITY

Bigger & more events during shut-in than injection periods

Hydraulic Stimulation 1st stimulation (PX-2 1st Jan 29 - Feb 20, 2016)^{ESTRESS}

SEOUL NATIONAL UNIVERSITY

• Max. magnitude of $M_{\rm L}$ 1.7 during the shut-in (~ 4 days after shut-in)

Hydraulic Stimulation 2nd stimulation (PX-1, Dec 15 - Dec 28, 2016) DESTRESS

SEOUL NATIONAL UNIVERSITY

- Max. pressure: 27.7 MPa / Max. Injection rate: up to 18.0 L/sec in Dec 16
- Net injection: 2,689 m³ at Jan 6 15:44 (total injection: 3,907 m³, bleed-off: 1,218 m³)
- Biggest events: M_L 2.2 (Dec 23) @ WHP 16.2 MPa, M_L 2.2 (Dec 29) @ WHP 8.2 MPa
- # of seismic event: 837 (~ Jan 11 1:30)

PX-1 stimulation

Hydraulic Stimulation 2nd stimulation (PX-1, Dec 15 - Dec 28, 2016) DESTRESS

SEOUL NATIONAL UNIVERSITY

• Pressure peaks at 15~ 17 MPa in Dec 15 2016, during the stimulation in PX-1

Hydraulic Stimulation 2nd stimulation (PX-1, Dec 15 - Dec 28, 2016) DESTRESS

- Injection rate at ~14.5 MPa: 1.77 L/s (Dec 15) \rightarrow 2.88 L/s (Dec 16) \rightarrow 5.11 L/s (Dec 28)
- Injectivity at ~14.5 MPa: 0.08 L/s/MPa (Dec 15) → 0.20 L/s/MPa (Dec 16) → 0.35 L/s/MPa (Dec 28)
- Wellhead pressure at 1.11 L/s: 14.0 MPa at Dec 15 \rightarrow 9.7 MPa at Dec 28
- Wellhead pressure at 5.11 L/s: 16.5 MPa at Dec 15 → 14.71 MPa at Dec 28

Hydraulic Stimulation PX-1 and PX-2

- Permanent k increase by ~ 3 times (PX-1)
- Non-linear jacking (reversible k change, PX-2)

Hydraulic Stimulation Numerical modeling

SEOUL NATIONAL UNIVERSITY

 Pressure-flowrates were reproduced by coupled hydromechanical numerical model (TOUGH-FLAC)

Hydraulic Stimulation Management of Induced Seismicity

SEOUL NATIONAL UNIVERSITY

• Traffic light system was used to manage induced seismicity

	_	Max I	EQ: 2.0) – 2.5					
ML						(cm/s)			$\left[(cm/s) \right]$
	PX-2 1 st stimulation				PX-1 & PX-2 2 nd stimulations				
	Stage	Pumping	Injection pressure	Report	Stage	Injection pressure	Injection rate	Report	
2.5 —	5	Stop	Bleed-off excess pressure	Alarm to H.S. team Report to research institutions Report to local and project related institutions (KMA, Pohang city, MOTIE, KETEP)	5	Decrease	Bleed-off	Warning (3 rd stage) External report: KETEP, Government	2.0
					4 2.0	Decrease	Bleed-off	Warning (2 nd stage) External report: KETEP, R&D consortium	
2.0 —	4	Stop	Bleed-off excess pressure	Alarm to H.S. team Report to research institutions (SNU, KICT, KIGAM, POSCO, INNOGEO)	10 ³	Decrease	Bleed-off	Warning (1 st stage) Internal report: KIGAM monitoring team	1.0
1.7 -	3	Reduction or Stop	Reduction or constant	Alarm to H.S. team (H.S. team, M.S. monitoring team, Boards of NovCoo)				and NexGeo	0.4
1.4 — 1.0 —	2	Constant flow rate	Constant pressure	Report to hydraulic stimulation team (H.S. team, M.S. monitoring team)	0.4 2 0.04	Design level or decrease	Decrease or shut-in	Advisory Internal report: KIGAM monitoring team and NexGeo	0.04
	1	Regular operation	Regular operation	Regular report (Microseismicity monitoring team)	1	Design level	Design level	Regular report Internal report: KIGAM monitoring team	0.04

Hydraulic Stimulation Induced seismicity (Kaiser Effect)

SEOUL NATIONAL UNIVERSITY

Number of seismicity/ Number of seismicity/ Injection volume per stimulation Injection volume per stimulation **PX-1** PX-2 0.25 0.16 0.1412 0.214 0.14 0.20 0.12 0.10 0.15 0.08 0.10 0.06 0.04 0.05 0.030 0.02 0.0068 0.0018 0.00 0.00 PX-2 1st PX-1 1st PX-1 2nd PX-2 2nd PX-2 3rd

• Reservoir becomes aseismic due to repeated stimulation

Conclusions

- Pronounced hydraulic shearing was observed.
 - Permanent Δk (permeability increase) ~ factor of 3
- Significant non-linear jacking occurred without significant permanent Δk
- Significantly different behavior between two boreholes shows that the proper drilling operation is very important
- Hydromechanical numerical reproduction of hydraulic shearing or jacking is possible
- More and greater seismic events during shut-in
- Seismic events show significant Kaiser memory effect.
- Investigation on the linkage between hydraulic stimulation in Pohang (<10,000m3) and EQ 5.4 (Nov 15 2017) is ongoing.
 - Great lessons for EGS community