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I. Introduction: The ATLS 

This public report entitled “Workflows for seismic risk assessment for soft stimulations” corresponds 
to the Deliverable 3.2 of the European Destress project. This comprehensive report is done on the 
framework of the WP3 dealing with “Risk management workflows for deep geothermal energy” and 
involved the scientific staff from ETH (Switzerland) and TNO (The Netherlands).  

In recent years, seismicity induced by industrial operations has become an important topic of public 
interest. In many cases, earthquakes occurring in the vicinity of industrial facilities carrying 
underground operations were felt by the population, caused damages to private buildings, and 
increased the public concern about the development of these industrial activities (Ellsworth 2013). The 
increasing number of reported cases of such " man-made " earthquakes and their strong socio-
economic impact has raised intense public debates and the interest of the non-scientific community 
on this topic (Grigoli et al. 2017). Such activities include water impoundment, mining, fluid subsurface 
resulting from operations related to hydrocarbon extraction, hydraulic fracturing for shale gas 
exploitation, wastewater injection, hydrocarbon storage operations, CO2 geological sequestration and 
hydraulic stimulation of geothermal fields. The stress perturbations produced by underground 
industrial activities, when proximal to seismogenic structures, might generate earthquakes. Fluid 
injection and consequent pore pressure alteration may also create new fractures and/or alter the 
frictional condition on existing faults, triggering new failures. The term " induced seismicity " generally 
refers to anthropogenic seismic events in a wide sense, however several studies (e.g. McGarr and 
Simpson 1997, Shapiro et al. 2010, Dahm et al. 2013) tend to make a clear distinction between “pure” 
induced and triggered seismicity. In the first case, induced seismic events are entirely controlled by 
stress changes caused by human operations and the whole rupture process, including its size, is driven 
by this stress (Dahm et al. 2013). In triggered seismicity the tectonic stress plays a primary role, while 
the human activity contributes only for a small fraction of the stress change. However, when close to 
tectonic faults, such (even small) stress changes can cause a loaded fault to fail. In this case, human 
operations are the trigger for an earthquake that would have occurred naturally in any case, but likely 
at a later time (Dahm et al. 2013). Furthermore, since these operations act only to accelerate the 
process of tectonic stress release, the magnitudes of such earthquakes can be large, depending on the 
amount of elastic strain energy accumulated on the fault due to tectonic loading and the fault 
dimensions. In this sense, a large earthquake could be triggered by minor induced stress changes, if 
the fault is prone to rupture. In this report we will use the term induced seismicity with is general 
meaning, as synonym of the anthropogenic seismicity. 

The problem of induced seismicity is particularly important for the future development of deep 
geothermal energy in Europe which, despite his huge potential, it is still a small fraction of the total 
energy produced from renewable sources. One of the main obstacles to this development is that the 
high fluid pressures and the large fluid volumes injected during hydraulic stimulation operations may, 
induce or trigger seismic events that can be felt by the population, reducing the public acceptance of 
deep geothermal energy exploitation projects. Induced seismicity is thus an unwanted product of such 
industrial operations but, at the same time, induced earthquakes are also a required mechanism to 
increase the permeability of rocks, enhancing reservoir performances. For these reasons in urbanized 
areas deep geothermal resources can only be exploited if the problem of controlling induced seismicity 
is adequately addressed. The failure of recent projects such as Basel (2006, Switzerland), St Gallen 
(2013, Switzerland) and Pohang (2017, South Korea) highlighted that existing tools for seismic hazard 
management in hydrocarbon and geothermal reservoirs (the so-called “Traffic Light System” TLS - e.g., 
Bommer et al., 2006; Haering et al., 2009; Bosman et al., 2016) are not sufficient to warrant the safety 
of such industrial operations. TLSs are based on or several decision variables, typically three main 
observables: 1) public response, 2) observed local magnitude and 3) peak ground velocity and 
acceleration. In a four-stage action plan, the injection of fluids would either be 1) continued as planned 
(green); 2) continued but not increased (yellow); 3) stopped (orange) or 4) stopped and a “bleed-off” 
initiated (red). So far, TLSs do not take in consideration the full range of possible scenarios and the 
uncertainty of the process. As they have no capability to forecast the seismicity produced by a specific 
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injection protocol, they resulted ineffective in preventing felt induced earthquakes that led to the 
definitive closure of several projects around the world. Hence, to mitigate the overall risk more 
advanced tools and workflows are required. 

In this context, one of the main aims of DESTRESS is to provide operators with a reliable decision tool 
to estimate the risk of induced seismicity following reservoir operations. Such tools are referred to as 
Adaptive Traffic Light Systems (ATLS) and were spearheaded in the EC project GEISER. 

ATLS are decision support tools that are fully probabilistic, data-driven (in the sense that microseismic 
date are integrated in real-time to update geomechanical and seismicity forecasting models) and risk-
based (integrating hazard, exposure, and vulnerability). The technical diagram describing the workflow 
of the ATLS is shows in Figure 1. 

 

Figure 1: Schematic representation showing the workflow of the ATLS. 

They are designed to overcome the limitations of the traditional heuristic methods. Here, the 
assignment of a magnitude threshold is based on a quantitative risk assessment, subject to a safety 
criterion imposed by the authorities (e.g., fixed probabilities of unaccepted nuisance, damage or 
fatalities). As a consequence, the ATLS is an objective and statistically robust mitigation strategy, which 
facilitates a fair and transparent regulatory process. This approach is in line with the procedures 
common for most other technological risks, such as in the hydropower, nuclear or chemical industries. 
Model-based forecasting and alerting are already advocated elsewhere, such as in hurricane data 
assimilation and forecasting. ATLS are fully probabilistic, data-driven (in the sense that new data is 
integrated on the fly to update geomechanical and seismicity forecasting models) and risk-based tools 
that integrate all relevant information, such as hazard, exposure, and vulnerability of the structures 
close the industrial sites. In the next section we will describe in more detail the characteristics of 
Advanced Traffic Light Systems, which consists in its simplest form of two main components: 

• Induced Seismicity Monitoring Tool 

• Seismicity Forecasting and Risk Analysis Tool 
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II. Induced Seismicity Monitoring Tool 

One of the major challenge in ATLS concept is the ability to detect and locate micro-earthquakes 
reliable, accurately and in a highly automated way, down to the smallest possible magnitude. We also 
need to determine source parameters (magnitudes, stress drops, focal mechanism). In the concept of 
the EU project DESTRESS, we evaluated the capability of Distributed Acousting Sensing (DAS) systems 
in monitoring microseismicity and developed an improved workflow for highly automated 
seismological data processing, fully integrated into the open-source software framework SEISCOMP3. 
The goal of these developments is to greatly improve the baseline seismological data that is the input 
for real-time seismicity forecasting and risk assessment. 

Microseismic Monitoring Infrastructures 

Microseismic monitoring is the fundamental tool used by decision makers to decide, whether to stop, 
decrease or continue the industrial operations being monitored. High density microseismic monitoring 
networks allow the detection of weak events (generally below magnitude 0), even in presence of 
strong noise contamination. For this reason, a high-quality monitoring network should be combined 
with noise robust, real-time and fully automated data analysis procedures, which are required to 
handle large datasets (Cesca and Grigoli 2015). 

To ensure an optimal monitoring of induced seismicity two main conditions should be satisfied: 1) the 
use of high quality microseismic monitoring networks based on leading edge technologies and 2) the 
use of sophisticated near real-time data analysis procedures.  

DAS monitoring systems are recognized as serious alternative for traditional seismic monitoring 
systems and their capabilities for monitoring of microseismic events have been demonstrated recently. 
DAS has the main advantages that it can acquire reliable data, with a high spatio-temporal resolution 
at a relatively low-cost. Moreover, recent studies have shown that pre-existing telecom cables can be 
potentially used to record seismicity further favoring this technique as a low-cost alternative for 
conventional (micro)seismic monitoring systems (Lindsey et al., 2017; Jousset et al., 2018). Numerical 
simulations can help to test the capability of using DAS fibre-optic sensing for (micro)-seismic 
monitoring. Based on outcomes from literature concerning DAS studies, representative operational 
parameters, such as geometry and signal-to-noise ratios, can be adopted into simulations.  

In general, the completeness of earthquake catalogue data relies on the availability of reliable 
monitoring data, such that relevant earthquake characteristics can be determined accurately. Various 
literature sources provide monitoring recommendations specifically for geothermal sites (Baisch et al., 
2016; Bohnhoff et al., 2018; Kraaijpoel et al., 2013; Majer et al., 2012), where a minimum detection 
level for PGV at the surface of 2*10-5 m/s is recommended. For a representative geothermal site this 
roughly corresponds to an M~0 earthquake, whereby actual detected signal strength is also 
determined by elastic medium properties and seismic survey geometry. Maximum noise amplitudes 
on the order of 2*10-6 m/s in the range 5-40 Hz are recommended by Kraaijpoel et al. (2013). Recently 
various studies demonstrate the added value of using distributed acoustic sensing systems (DAS) 
within seismic monitoring networks (Mestayer et al., 2012; Mateeva et al., 2014). The signal obtained 
from such systems is a distributed measurement over a length of cable defined as the gauge length 
(see Figure 2). Using optical interferometry, strain within the fibre is measured down to micrometer 
level and up to 1000 Hz. The gauge length, approximately corresponding with spatial sensor-recording 
interval in conventional point sensor recording, is in the order of 1-10 meter. A total fibre optic length 
of 10 km is available for recording and thus up to +- 10000 channels can be effectively used. Recording 
bandwidth is 1- 1000 Hz which is considered broadband in seismic acquisition. Currently, quite some 
conventional seismic acquisition systems exist with similar specs, but what really sets DAS apart is 
where and when it can record. The measuring string of DAS is merely a fibre optic cable, whereas 
conventional geophone systems have bulky sensors, cables and boxes. WiFi solutions exist but are not 
suitable around metal casing. Most important: DAS fibres can access locations and under conditions 
that are out of reach for conventional geophones. A DAS fibre can be mounted outside the casing, in 
the cement or even outside the cement for direct contact with the reservoir. The fibre can withstand 
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high overpressures and temperatures, up to 100 bar and 250° C. These systems could provide 
additional information within a network of standardized seismometers. An important aspect of DAS 
systems is whether they meet the requirements necessary to feed a traffic light system with reliable 
seismicity information. The sensitivity of DAS systems should be sufficient to reach desired or required 
minimum magnitude and PGV values as well as acceptable even location accuracies.  

In the work presented here, we approximate synthetic noise levels by adopting typical DAS noise levels 
from literature in which earthquake events were analyzed within real DAS data (Lumens, 2014; Lindsey 
et al., 2017). These noise levels can be considered as the bulk effect of the four categories of transfer 
functions. Note however that these noise levels are of course site specific and dependent on the 
geology, well design, design of the DAS cable and type of interrogator. Lindsey et al. (2017) compared 
the earthquake response of a DAS cable buried in a shallow trench to a seismometer recording in 
Central Alaska for an M3.8 event. Lumens (2014) considers DAS noise levels in Oman for weak 
earthquakes on the order of M~0. 

 

Figure 2: Schematic presentation of VSP recording with DAS (from Mateeva et al., 2014). 

In our simulation we considered a site in the Netherlands where geothermal operations are planned, 
situated near Utrecht. Here the Rotliegend sandstone is the anticipated reservoir and situated at 
approximately 1750 m depth. Velocity information from a sonic log in the vicinity of the anticipated 
geothermal site, was used to construct a P-wave velocity model (well Jut-01 obtained from 
www.dinoloket.nl). S-wave velocity models were estimated from Castagna relationships (Castagna et 
al., 1985). The seismic wave propagation modelling package SPECFEM2D was used to conduct forward 
simulations (Komatitsch and Tromp, 1999; Tromp et al. 2008). SPECFEM, of which SPECFEM2D forms 
a module, relies on the spectral element method and is an efficient package for calculating elastic 
simulations, thereby accommodating complex velocity structures. The geometry of the SPECFEM 
model used here is shown in Figure 3. Several simulations were conducted to address the effect of 
attenuation and of different noise conditions on DAS data. 
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Figure 3: Geometry of the SPECFEM2D model. 

Simulations of elastic wave propagation were conducted resulting in synthetic ground motion 
recordings along the synthetic DAS line. As a first order approximation we address the DAS directivity 
by only considering the vertical component of the simulated data, since the DAS response is maximum 
parallel to the fibre direction, which is vertical in our case. Figure 4 shows snapshots of the vertical 
velocity component of the wavefield for 6 successive times. Synthetic DAS receiver panels calculated 
during the simulation are shown in Figure 5, that include attenuation prescribed by the quality factor 
(Q), where we perturbed the synthetics with gaussian distributed noise. Here the SNR is calculated on 
the full time window of the synthetic waveform and defined by: 

𝑆𝑁𝑅 =
max(𝑎𝑏𝑠(𝑠𝑖𝑔𝑛𝑎𝑙))

max (𝑎𝑏𝑠(𝑛𝑜𝑖𝑠𝑒))
   (1) 

Figure 5a shows the vertical component receiver gather that is unperturbed with noise, whereas Figure 
5b and c respectively have SNR levels of 10 and 2. The increasing perturbation of the signal with noise 
illustrates how the signal will eventually be masked by the background noise level.  

In Figure 6a, a comparison is made for the peak differential displacement calculated over 10 m gauge 
lengths. The result is compared against the noise floor observed for DAS recordings by Lumens (2014). 
This shows that for the considered simulated earthquake within the elastic medium we prescribed the 
synthetic displacements exceed the DAS noise level by far, thus having a sufficiently high SNR. Figure 
6b shows the comparison of peak differential displacement versus depth with a comparison to the 
lower detection threshold recommended for traffic light systems (Kraaijpoel et al., 2013). This shows 
that for the entire depth range the DAS response is sufficient to detect the considered simulated event, 
as it falls above the noise level. Figure 6 also shows significant variations in depth of peak 
displacement- and velocity values, due to partial transmission and reflection of the propagating 
wavefield at elastic contrasts and the effect of the angle of incidence; note that we only consider the 
vertical component here. The noise conditions will be further addressed more carefully based on 
literature to address whether the performance of DAS is expected to be sufficient for detection of 
weak seismic events. 
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Figure 4: Snapshots of elastic wave propagation of vertical particle velocity field. 

 

Figure 5: Synthetic vertical component data for various noise conditions with attenuation (Q=50). A) No 

noise. B) Gaussian distributed noise with SNR=10. C) Gaussian distributed noise with SNR=2. Note in this 

figure a vertical trace spacing of 40 m was used to improve visibility, although the actual synthetic trace 

spacing was 2 m. 
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Figure 6: a) Peak differential displacement (PDD, black) calculated over 10 m gauge length versus depth 

for the simulated data shown in Figure 4a. The DAS noise floor from Lumens (2014) in red, is 2-3 orders 

of magnitude below the peak differential displacement for the entire depth range for the considered 

simulated earthquake event. a) Peak differential velocity (PDV, black) for 10 m gauge length together 

with lower detection threshold limit recommended for traffic light systems (red, Kraaijpoel et al., 2013). 

The peak differential velocity falls above the detection threshold for the entire depth range. 

Within the project DESTRESS we prepared and tested a modeling approach to simulate the DAS 
response with SPECFEM2D. The approach is ready for use in more realistic scenarios. Here one can 
consider various site-specific conditions determined by well design, DAS cable design, type of 
interrogator and local geology. Based on initial results we expect that DAS can be suited to feed traffic 
light systems in the near-future, given the ongoing improvements in placement and performance of 
these systems. To reach sufficient spatial coverage to monitor a geothermal reservoir, it is likely that 
additional surface seismometers are required in addition to a DAS cable deployed along the well. This 
will be required to allow localization of seismic events with sufficient accuracy, especially further away 
from the well. Alternatively, a DAS cable could be deployed in a near-surface trench. 

The desired performance on detection and location of an induced seismicity monitoring infrastructure 
is strongly dependent on the type of application (Trutnevyte and Wiemer 2017) and should be 
designed in synergy with a risk assessment and site characterization phase, for the cost-benefit 
optimization. The accuracy of the location performance is important to understand ongoing seismic 
processes (e.g., to map the spatio-temporal evolution of the seismicity which could reflect fluid 
migrations)(Ogwari et al. 2016), but also is a fundamental information to discriminate between natural 
and induced seismicity (Dahm et al. 2013). However, also in this case, the desirable location 
uncertainty remains intrinsically linked to the type of operations and potential hazard. Since the 
location performance is not only controlled by the geometry and technology of the monitoring 
infrastructure, but also on the adopted methodology for location and on the available velocity model, 
tests with synthetic simulation and real data remain the best practice to assess the location 
performance of the network (Kinnaert et al. 2016). Location uncertainties can be reduced by using 
dense networks with at least one station (better if deployed in a borehole) directly above or within 
few kilometers from the potential source of seismicity (e.g. injection well).  

In order to efficiently monitor induced microseismicity, well designed monitoring networks using 
leading edge technologies need to be combined with advanced data analysis methods. We thus need 
efficient real-time earthquake detectors, high precision locations and reliable source parameters (e.g. 
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magnitude and, if possible, source mechanisms). Since microseismic events are often characterized by 
low signal-to-noise ratio, obtaining reliable source parameters is still challenging (Cesca and Grigoli 
2015). In addition, microseismic networks generally record a large number of weak earthquakes 
(magnitude completeness of these networks is commonly Mc<=0.0), and quick analysis of such huge 
datasets is hardly achieved through manual data analysis procedures. Thus, robust automated data 
analysis procedures should be established. 

 

Figure 7: Summary of detection results for the first hour of the Mw 3.3 St. Gallen Seismic Sequence. (a) 

Cumulative plot showing the number of events detected by each method as a function of magnitude. 

(b) Total number of detected events. Each colour represents a different detection method. (from Grigoli 

et al. 2018) 

Modern methods can be used as robust and fully automated procedures for microseismic data 
analysis, which can lead to more reliable results than standard approaches. Among these approaches, 
detection methods based on waveform template matching have been extensively applied to induced 
seismicity datasets (Skoumal et al. 2015, Yoon et al. 2015). Within DESTRESS we developed new 
seismological analysis techniques and we applied them to the St. Gallen induced seismicity sequence 
(Grigoli et al 2018). Finally, we compared the results with those obtained by using standard analysis 
techniques. As illustrated in Figure 7 waveform template matching allows successful detection of a 
large number of hidden events which often are buried by noise and lead to a dramatic increase of the 
catalog completeness, highlighting more detailed relationships in the space-time-magnitude domain 
between the seismicity and industrial activities (Skoumal et al. 2015, Bao and Eaton 2016, Goebel et 
al. 2016). However, these approaches need a high-quality reference catalogue which need to be 
obtained with other techniques. Also in this case new detection and location techniques over perform 
the standard seismological analysis techniques. The Figure 7 shows in fact that standard approaches 
only detect 8% of the total seismic events. 

It is also important to point out that the performance of absolute location methods strongly depends 
on the quality of the available velocity model. When dealing with poor velocity models location 
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accuracy can be strongly reduced, affecting the output of further geological and geophysical analysis 
(e.g. estimation of source mechanism, event magnitude, etc.) (Grigoli et al 2016). To reduce the 
dependence on the velocity model and obtain more accurate results, relative location methods are 
thus required. Most of these methods rely on differential travel times for pairs of earthquakes 
observed at common stations (Waldhauser and Ellsworth 2000), which can be computed automatically 
using cross-correlation (Schaff and Waldauser 2005). Differential times can be now computed in a fast 
and efficient way, allowing to obtain double difference locations in real-time (Waldhauser and Schaff 
2008). The Real-Time Double-Difference analysis has been successfully applied to the northern 
California seismicity, including induced seismicity recorded at the Geyser geothermal field 
(Waldhauser 2009) (http://ddrt.ldeo.columbia.edu). Within DESTRESS we developed a new open-
source Seiscomp3 module that performs relative seismic event location using the Double-Difference 
approach in real-time (scRTDD). 

Robust magnitude estimation is also important and should be performed in any induced seismicity 
monitoring operation. The quality of the magnitude estimation, as for the location, will depend also 
on the monitoring setup. In this perspective, the presence of one or more broadband seismometer 
remains fundamental to cover low frequency (i.e. less than 1 Hz) spectra and to better constrain the 
magnitude of larger events, which can, in combination with a short period seismic network, be used 
to calibrate magnitudes of smaller earthquakes. Given the multiple magnitude types and estimation 
techniques, transparent procedures to estimate the magnitude should be provided. The magnitude 
determination is not a trivial process, and important differences have been detected among different 
catalogs related to induced seismicity (Edwards and Douglas 2014). Moreover, induced seismicity often 
occurs in low seismicity region, where robust attenuation curves cannot be easily calibrated. Weak 
induced events (i.e. generally with magnitude less than 1) may be recorded only locally and the 
adoption of regional attenuation laws may bias the magnitude estimation. The problem has been 
recently illustrated for the Blackpool (UK), induced seismicity case by (Butcher et al. 2016), who 
depicted large, critical discrepancies between magnitudes calculated using local-distance stations (Ml 
2.3) and those based on records from the regional network (Ml 1.2). This has obvious significant 
implications for the regulation of the risk of induced seismicity, which is often managed on the base of 
traffic light schemes, depending on the estimated magnitude. The radiation pattern of earthquakes 
can affect magnitudes, e.g. if the monitoring network has large azimuthal gaps. Therefore, full 
waveform modeling techniques to characterize the seismic source processes are useful to investigate 
the geometry of active faults, to detect tensile failures or to investigate stress drops. These techniques 
also benefit from the availability of broadband records, possibly covering the source radiation patterns 
from different azimuths (Grigoli et al. 2017). 

Finally, it is worth to highlight that a good microseismic network is a necessary, but not sufficient 
condition to successfully monitor induced seismicity. Although several advanced and reliable analysis 
methods are currently available, in routine monitoring operations most of the processing is done using 
standard approaches which often do not lead to reliable results when dealing with noisy data or when 
the velocity model is poorly known. In many cases, in fact, routinely monitoring operations are 
performed by using techniques not specifically designed for this type of applications, thus they may 
not fully exploit the performance of the monitoring infrastructure. Within DESTRESS we have shown 
that the combination of optimal network infrastructures with sophisticate data analysis techniques 
lead to better seismic catalogues which are main input for current ATLS systems, strongly helping in 
the decisional process during crises. 
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III. Seismicity Forecasting and Risk Analysis Tool 

Planning phase, preliminary hazard and risk analysis 

A seismic risk assessment is generally requested by authorities before a new project can be accepted. 
An example of a risk report for a Swiss DGE project can be found online: 

Synthèse des études relatives à la sismicité induite, Projet pilote de géothermie profonde Haute-Sorne, 
by Geo Energie Suisse (on https://www.jura.ch/) 

Here we will present an example workflow for the site of Haute-Sorne. Note that that analysis here is 
an example with realistic but somewhat arbitrary assumptions, intended to illustrate the principle 
workflow and sensitivities. It is not identical to the official risk assessment conducted by the operator 
and judged by the cantonal authorities, and it is not an official assessment of the Swiss Seismological 
Service. 

T A project can often start with a pre-screening as suggested by Trutnevyte and Wiemer (2017). A risk 
assessment includes a regional study of the tectonics, natural seismicity, and built environment. It 
describes the injection protocol and how induced seismicity would be evaluated (by seismic monitoring 
- see previous section about monitoring) and mitigated (classic TLS with magnitude threshold or 
vibration threshold following various norms - see next section for an alternative). Various risk scenarios 
(deterministic and probabilistic) are described (see also Mignan et al., 2015 and the Haute-Sorne case 
below). The possibility of a large earthquake (above the McGarr limit) is also investigated by fault 
mapping (cartography, geomorphology, seismic reflection) and physical modelling (by using standard 
approaches such as stress transfer computations). Distinction is often made between the following 
phases: planning, drilling/logging/testing, stimulation, operation, and post-operation. For a proposed 
detailed structure of the risk report (introduction and context, project description, hazard and risk 
assessment, proposed monitoring and mitigation strategies, summary and recommendations), see SED 
(2017). 

In the planning phase, we advise a preliminary probabilistic induced-seismic hazard and risk analysis. 

It is important to remark that in this phase the goal is to determine a first-order earthquake-induced 

hazard and its propagation to the risk assessment. As such, the immediate aim is to provide a 

preliminary baseline for operators and stakeholders for a coherent decision making, communication 

and mitigation actions. Therefore, the preliminary assessment is suitable for the planning phase and 

on the long term, updates and revisions are expected after interactions with the operators and 

stakeholders.  

In a probabilistic setting, the study should follow the standard definition of the seismic risk as the 

convolution of three components: hazard, vulnerability, and exposure. We can summarize the analysis 

in the following key points: 

• Definition and selection of the sources of epistemic and aleatory variability 

• Definition and selection of the earthquake source and rate models  

• Selection of the reference intensity measure and selection and/or definition of ground motions 

predictive equations (GMPEs) and the intensity predictive equations (IPEs) 

• Definition and selection of vulnerability function and related consequence models based on 

the exposure asset of the region  

• Organization of the selected different models into a logic tree structure 

The output of the analysis is a preliminary probabilistically characterization of the potential financial 
losses for each settlement of interest, and/or aggregate for the entire built portfolio. In addition, when 
variability of the output is large, we recommend a sensitivity analysis to determine the contribution of 
each parameter to the variability of the estimated financial losses. The detailed analysis should be 
organized as follows: the first part presents the input datasets and models and the logic tree structure, 

https://www.jura.ch/
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the second part shows details of model implementations, and end-to-end calculation of the fluid-
induced seismic hazard to risk; the third section (optional) presents a sensitivity analysis to understand 
the driving variables defining the seismic risk. In this document, we report general suggestions for 
implementation details. However, deviations from what we report are possible and, sometimes, 
recommendable if a more detailed solutions are available. 

Preliminary Seismic Hazard analysis  

For a preliminary assessment, we suggest to use the classical Probabilistic Seismic Hazard Analysis 
(PSHA) (Cornell, 1968; McGuire, 1995) adapted to account for the time variant rate of seismicity 
(typical of induced seismicity). There are two key elements in PSHA: (a) the definition and the 
probabilistic characterization of the seismogenic source model, and (b) the ground motion 
characteristic model describing the expected ground shaking given the occurrence of an earthquake. 
The first provides the spatial and the temporal forecast of the earthquake ruptures, whereas the 
second links the earthquake rupture with the expected ground shaking at the site of interest (via the 
GMPEs). The outputs of PSHA are either rate of exceedance or hazard curves (probability of 
exceedance for a given period of time) of a selected ground shaking Intensity Measure type (𝐼𝑀), such 
as peak ground acceleration (PGA), velocity (PGV), spectral acceleration (SA) and/or macroseismic 
intensity. 

To include also the epistemic uncertainties, given the alternative interpretation of data, assumptions 
and decisions (i.e. selection of the appropriate physical and statistical models) a logic tree structure 
with weighted branches (representing the belief of a given model) must be defined. Figure 8 shows an 
example of a schematic logic tree. The first level of the logic tree describes the uncertainty related to 
the selection of the rate model, while the second level on the uncertainty relates to 𝑀𝑚𝑎𝑥, the third 
level the GMPE&GMICE level, the fourth level the vulnerability models, the final level the cost 
functions. This scheme has been adopted in Mignan et al. 2015 and Broccardo et al. 2019 (in 
preparation). 

 

Figure 8: Logic tree scheme for a preliminary hazard and risk analysis 

In a preliminary investigation, it is acceptable to assume that the induced earthquakes nucleate and 
eventually extend in the proximity of the injection point. Consequently, a point source located at the 
coordinates of the injection point can be adopted as the unique source model. However, this implicitly 
excludes any geometrical uncertainty on the hypocenter location.  

A characteristic that differentiates fluid-induced seismicity from natural seismicity is the time- variant 
rate of seismic events. In fact, it has been shown by several studies (Mignan et al., 2017; Broccardo et 
al., 2017; Ellsworth, 2013; Langenbruch et al., 2011; Shapiro and Dinske, 2009), that this is related to 
the rate of the injected fluid. Consequently, while a homogeneous Poisson Process is appropriate for 
natural seismicity (which is characterized by constant base rate 𝜆0), fluid-induced seismicity, generally 
(with some exceptions), follows a Non-Homogeneous Poisson Process (NHPP) with a given time-variant 
rate 𝜆(𝑡). The true rate 𝜆(𝑡) is not known a priori, and it can be estimated either with a computational 
model, or with an empirical relationship (or both). Specifically, we recommend the relationship 𝜆(𝑡) =
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10𝑎−𝑏𝑚0�̇�(𝑡) with �̇�(𝑡) being the rate of injection of the fluids during the stimulation, and 𝑚0 the 
magnitude of completeness. This empirical linear relationship between number of earthquakes and 
volume injected is well accepted in the seismological community (Dinske and Shapiro, 2013; Mignan, 
2016; van der Elst et al., 2016; Mignan et al., 2017; Broccardo et al., 2017b). Note that it only applies 
to the stimulation phase in which the fluids injected are not supposed to be back produced, hence 
creating an overpressure field at depth z. The validity of the model is illustrated on Figure 9 for some 
high-quality induced seismicity data. While the underground feedback parameters a (i.e. the overall 
activity for a given volume V injected somewhere) and b (i.e. the ratio between small and large 
earthquakes) can be estimated during the stimulation (Mignan et al., 2017; Broccardo et al., 2017b; 
see next section), a priori knowledge on those parameters is limited and the range of possible values 
wide. We list parameter estimates for different sites in Table 1.  

 

Figure 9: Induced seismicity model fitting of six (high-quality data) fluid injection experiments. The 

observed seismicity rates are represented in grey and the model (i.e., the linear relationship between 

stimulation flow rate Qstim and seismicity rate) in red. 
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Table 1: Underground seismic feedback to deep fluid injection. 

Site (country*, year) a† b References 

Ogachi (JP, 1991) -2.6 0.7 Dinske and Shapiro (2013) 

Ogachi (JP, 1993) -3.2 0.8 Dinske and Shapiro (2013) 

Soultz (FR, 1993) -2.0 1.4 Dinske and Shapiro (2013) 

KTB (DE, 1994) -1.4 0.9 Mignan et al. (2017) 

Paradox Valley (US, 1994) -2.4 1.1 Mignan et al. (2017) 

Soultz (FR, 1995) -3.8 2.2 Dinske and Shapiro (2013) 

Soultz (FR, 1996) -3.1 1.8 Dinske and Shapiro (2013) 

Soultz (FR, 2000) -0.5 1.1 Dinske and Shapiro (2013) 

Cooper Basin (AU, 2003) -0.9 0.8 Dinske and Shapiro (2013) 

Basel (CH, 2006) 0.1 1.6 Mignan et al. (2017) 

KTB (DE, 2004-5) -4.2 1.1 Dinske and Shapiro (2013) 

Newberry (US, 2012) -2.8 0.8 Mignan et al. (2017) 

Newberry (US, 2014) -1.6 1.0 Mignan et al. (2017) 

* ISO code; † referred to as seismogenic index in Dinske and Shapiro (2013). 

In the preliminary hazard analysis, to facilitate standard hazard computations, we suggest to convert 

the time-variant rate into an equivalent stationary rate, i.e. λ̅ = ∫  λ(t)
T

0
/T (where T is the total 

duration of the project). As a consequence, the classical Homogeneous Poisson Process (HPP), and the 
classical probabilistic seismic hazard analysis (PSHA) can be used to define the occurrence model of 

the induced earthquakes. By using the proposed empirical model the “homogenized” �̅� =

10𝑎−𝑏𝑚0V/𝑇 can be defined directly by the total volume of the injection, which is known a-priori. 

The frequency magnitude distribution, has been proved to follow the classical Guttenberg-Richter 
distribution. However, one of the major source of uncertainty and debate is related to the upper bound 
of the (truncated) Guttenberg-Richter distribution. The debate is closely related to the above reported 
dispute between induced versus triggered seismicity. Since the complete information about the 
number, location, and stress condition of all active faults in the area of injection cannot be available 
(in particular before the stimulation phase), it is appropriate to consider both 𝑀𝑚𝑎𝑥s of induced and 
triggered seismicity. Specifically, the first ones are bounded by McGarr (1976, 2014) upper limit (which 
is based on the volume affected by the fluid pressures), while the second ones are bounded by the 
tectonic 𝑀𝑚𝑎𝑥 ). Consequently, covering in the logic tree the tectonic 𝑀𝑚𝑎𝑥 is generally a conservative 
and strongly recommendable approach in a preliminary fluid-induced hazard and risk analysis. Soil 
amplification factors, uniform or based on micro-zonation should be included if available. 

In the preliminary assessment, we suggest to use as 𝐼𝑀 the European Macroseismic Scale (EMS98, 

Grünthal, 1998). The advantage of EMS98 over these 𝐼𝑀s in a preliminary phase lies in the easier 

interpretability of this scale, which is based merely on shaking indicators expressed in terms of damage 

and nuisance to the population. Based on this considerations, when the selected GMPEs are expressed 

in terms of peak ground acceleration, peak ground velocity, or other ground intensity measure they 

should be converted into expected intensity by using a Ground Motion to Intensity Conversion 

Equation (GMICE) for small-medium intensities (e.g. Faccioli and Cauzzi, 2006, Faenza and Michelini 

2010). 

Once the logic tree is completely defined by the rate models, the 𝑀𝑚𝑎𝑥s, the GMPE & GMICE 

combinations, the hazard computation is given by classical convolution of all source of uncertainties 

for each branch of the defined logic tree. The output of analysis are the so-named hazard curves, i.e. 



DESTRESS 
Demonstration of soft stimulation treatments  

of geothermal reservoirs 
 

14.03.2019 20 

probability of exceedance of a given intensity measure normalized to one injection period, for each 

location of interest. Together with the hazard curves, we recommend also to provide Hazard maps, for 

a given probability of exceedance with respect to the median of the hazard curves. Figure 10 shows an 

example of hazard map for a probability of exceedance of the median hazard curve of 

𝑃(𝐼𝑀 > 𝑖𝑚; 𝑇) = 10−4, together with the Hazard curves for a given site of interest. The reference 

project is the Haute-Sorne Enhanced Geothermal System project.  

Preliminary Seismic Risk analysis  

Seismic risk is computed by convolving a vulnerability models for the relevant building typologies with 
the exposure model. In a preliminary risk analysis, we recommend to use a vulnerability given in terms 
of macroseismic intensity, which follows the macroseismic approach for damage assessment (Baisch 
et al., 2009; Lagomarsino and Giovinazzi, 2006) and that was modified in Mignan et al., 2015 for the 
induced seismicity case. In this approach, the vulnerability is not defined based on detailed mechanical 
models; therefore, it is implicitly assumed that macroseismic and mechanical approaches produce 
compatible levels of damage.  

The macroseismic model defines the mean damage grade, 𝜇𝐷(𝑖𝑚), as function of a vulnerability index 
𝑉, a ductility index, 𝑄, and a reduction factor 𝛼 introduced in Mignan et al. (2015) to recalibrate low 
damage states to the damage observed in the Basel 2006 sequence. The vulnerability index depends 
on the building class and construction specifics, and it includes (Lagomarsino and Giovinazzi, 2006) 
probable ranges 𝑉 − 𝑉 +, as well as less probable ranges 𝑉 − −𝑉 + +. In case no information are 
available on the vulnerability index range, it is recommendable to use 𝑉0 in a preliminary phase. 
Moreover, is no datelined information is given on the ductility index for the different class of building, 
we recommend to use 𝑄 = 2.3, which is the value for masonry structures and reinforced concrete 
structure with no seismic details. In this phase, this a practical and conservative choice because 𝑄 =
2.3 is a lower bound of the possible ranges of values for the ductility index. Figure 11 shows the fragility 
functions obtained by using the macroseismic model with parameters 𝑉0 = 0.74, and 𝑄 = 2.3. 

 

Figure 10: a) Hazard map for the region of interest, based on the the q10−4 of the median.  Units: EMS 

b) Hazard curves for the site of interest. Source: Broccardo et al. 2019 in preparation. 
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Figure 11: Top subplot: fragility functions, bottom subplot: probability mass function pD(dk) for 

different level of intensity. The discontinuity at im = VII is due to correction faction α(im) introduced 

in Mignan et al. (2015). Source: Broccardo et al. 2019 in preparation. 

Damage assessment is translated directly into monetary losses via the Mean Loss Ratio (MLR), which 
is defined as the ratio between the repair cost and the insurance value cost (assumed equal to the 
asset cost). Therefore, the fragility functions are directly converted into mean loss neglecting the 
uncertainties on the loss for a given damage state. To account for this, we recommend using different 
cost functions and include these into the logic tree. For example, in Mignan et al. 2015 three cost 
functions (the Cochrane & Shaad cost function, Cochrane and Shaad, 1992, the RISK-EU cost function, 
Baisch et al. 2009, and the SERIANEX cost function, Baisch et al. 2009) have been used. 

The output of analysis are the so-named loss curves, i.e. probability of exceedance of a given loss 
normalized to one injection period, for each location of interest. Together with the loss curves, we 
recommend also to provide loss map distribution for the region of interest based on the probability of 
exceedance 𝑃(𝐿 > 𝑙; 𝑇) = 10−4 of the aggregate mean. Figure 12a shows the loss map distribution 
for the region of interest. Figure 12b shows the mean loss exceedance curves for each building class 
together with the aggregate loss for a settlement of interest. Figure 12c shows the loss exceedance 
curves for the site of interest together with the epistemic mean, median, 10% and 90% quantiles. The 
reference project is the Haute-Sorne Enhanced Geothermal System project.  Observe that while for 
hazard the epistemic median was the reference metric for the hazard maps, in financial losses we 
suggest the epistemic mean value. The same rule we recommend for decision making.  

The final operation consists in aggregating losses over the region of interest. Aggregating losses is 
equivalent to the problem of summing the random variables representing the losses of each 
settlement. As a practical approach in a preliminary analysis, we recommend to use a stochastic upper 
bound for the complementary cumulative distribution function (CCDF) of the aggregate loss sum since 
we know the marginal CCDF of the single local losses but their joint distribution. Despite the 
dependence structure is unknown, we can assume that the random variables are at most positively 
dependent. This is corroborated by physical evidence from seismic events. In fact, two closely spaced 
random variables have generally similar values, while sufficiently distant random variables are 
expected to have “more” independent values. A stochastic upper bound to the sum of at most positive 
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dependent random variables is given by considering them perfectly dependents (Dhaene et al., 2012; 
Broccardo et al., 2017). This correspond to summing quantiles for a given probability level. Figure 13 
reports the loss exceedance curves for the Haute-Sorne Enhanced Geothermal System project. 

 

Figure 12: a) Loss map distribution, b) Aggregated losses for different class distributions, and for the 
site of interest, c) loss exceedance curves for the site id-(41). Black dash line represents the total 
exposure of the settlement. Broccardo et al. 2019 in preparation. 

Finally, we recommend computing the Individual Risk (IR) defined as the annual frequency at which a 
statistically average individual is expected to experience death or a given level of injury from the 
realization of a given hazard (Broccardo et al., 2017; Institute of Chemical Engineering, 1992). Following 
the HAZUS method (Galanis et al., 2018; HAZUS MH MR3, 2003), the IR is computed by convolving the 
conditional probability of fatality for a given damage level, with the marginal probability of the damage 
grades. Figure 14 shows the IR contour for the region of interest based on the maximum epistemic 
mean of the IR of each class of buildings. Figure 11b shows the IR for each class of building for the 
settlement with highest individual risk (site id-64). Shaded in red, we reported a safety threshold of IR 

= 10-6, which corresponds to a micromort unit (1 mt) (Howard, 1980). The individual risk for each 
settlement is reported in the supplementary material. The results show that the epistemic median and 

mean of the IR do not cross the 1 mt threshold at any site of interest. The reference project is the 
Haute-Sorne Enhanced Geothermal System project. 
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Figure 13: Aggregate losses exceedance curve for the area of interest. The curves represent stochastic 

upper bounds of the sum of local losses. The black dashed vertical line represents the total building loss. 

Source: Broccardo et al. 2019 in preparation.  

 

Figure 14: a) Individual risk contours based on the maximum epistemic mean for each class of building. 

b) Individual risk for a given class building. Red and blue bars are the epistemic median and epistemic 

mean of the individual risk.  Source: Broccardo et al. 2019 in preparation.  

Induced seismicity forecast and a-posteriori risk assessment 

During the stimulation phase (i.e. reservoir creation phase), earthquakes are a necessary nuisance 
being a manifestation of "enhancing" the reservoir.  Mitigation strategies have been developed to limit 
induced seismicity, so-called traffic light systems (TLS) (e.g., Bommer et al., 2006; Bosman et al., 2016; 
Mignan et al., 2017). However, TLS have proven to be less adept to manage post-injection induced 
seismicity (Majer et al., 2007) and the suitability of TLS for regular reservoir operations has not been 
widely reported on in the scientific literature. As such, TLSs remain experimental. They are based on a 
decision variable (such as earthquake magnitude, peak ground velocity, etc.) and a threshold above 
which actions (e.g. stopping or reducing injection/production rates) must be taken. Although the 
definition of this threshold is currently based on local conditions, expert judgment and regulations 
(Bosman et al., 2016), Mignan et al. (2017) recently proposed an actuarial approach to induced 
seismicity risk mitigation where the TLS verifies a specific risk-based safety norm (based on the 

individual risk IR, i.e. the probability that a statistically representative individual dies within a given 

time window and at a given location). Considering norms and standards already in use in other 
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hazardous industries (Jonkman et al., 2003), one can now quantify the financial costs of applying a TLS 
and plan for future EGS plant siting accordingly (Mignan et al., 2019a;b). 

The hazard and risk assessment parts of the TLS are not described here, as they are identical to the 
approach used in the a priori risk assessment (see previous section), with the exception that the 
parameters a and b now are computed on the fly with a Bayesian procedure explained bellow. 
Moreover, in addition to the empirical relationship for the injection phase, we introduce a second 

empirical model for the post-injection phase defined as λ(t; θ) = 10a−bm0V̇(ts) exp(−
t−ts

τ
), and ts is 

the shut-in time, and τ is the mean relaxation time.  

Here, we directly move to the definition of the TLS threshold. With the model of induced seismicity 
presented in the previous section (which depends on volume injected, a, and b), one can forecast 
future seismicity if the injection flow rate is known in advance. A mapping can then be made between 
modelled seismicity rate and expected damage and risk (following standard methods of probabilistic 
seismic risk analysis, as shown in the previous section). Finally, for a given quantitative safety norm, 
say IR = 10-6 = 1 micromort, one can estimate the magnitude threshold above which injection should 
be stopped (i.e. TLS) for the norm to be verified (Mignan et al., 2017). This is represented in Figure 15. 
Such a method provides a robust and transparent tool to control induced seismicity based on a specific 
safety criterion decided by the authorities. This is of course subject to aleatory uncertainty 
(stochasticity of the process meaning that the norm is only verified on average) and to epistemic 
uncertainty (the a- and b-values of the model are not known in advance and may change over time, 
which requires Bayesian updating; see below). Note that such an approach is safety-norm agnostic. In 
fact, all safety norms that follow the same iso-risk curve would yield the same TLS. 

 

Figure 15: An adaptive TLS in action (in simulations): (left) Induced seismicity time series without ATLS 

(in grey) compared to a time series where the stimulation is stopped by the ATLS (magnitude threshold 

represented in green); (right) Verification that the safety standard or norm is respected on average 

when the ATLS is used (bottom curve) in contrast to no ATLS (top curve) - Rerun from Mignan et al. 

(2017) as shown in Mignan et al. (2019a). 

Real-time updating of fluid-induced seismicity forecasts 

In the preliminary hazard analysis, to facilitate standard hazard computations, we suggested to convert 
the time-variant rate into an equivalent stationary rate. Consequently, the Non-Homogeneous Poisson 
Process, has been converted into a Homogeneous Poisson Process. However, in the stimulation phase 
we recommended to use the full Non-Homogeneous Poisson Process and to define an updating 
scheme to forecast model parameters in real time. In particular, we recommend a hierarchical 
Bayesian framework (Broccardo et al. 2017) which allows a coherent classification and quantification 
of the epistemic and aleatory sources of uncertainty.  
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We prefer a Bayesian approach compared to a frequentist approach, since in the last one, the 
seismicity rate is assumed to be deterministic. It follows that the uncertainties are only aleatory 
preventing the possibility of including epistemic uncertainties related to past information resulting 
from different sites, and to expert judgments and opinions. Moreover, the seismicity-rate models are 
simply inferred from existing datasets. Although this provides an exact statistical description of the 
past events, it does not provide a robust online forecasting strategy. Further, the additional knowledge 
gained cannot be coherently encoded into future project planning. 

Alternatively, a hierarchical Bayesian model provides a precise distinction between the sources of 
uncertainties as well as a consistent online updating strategy. Following the empirical model 
introduced above, the time-varying rate of the Poissonian process is described as a function of the rate 
of fluid injection and a set of physical parameters describing underground properties (𝑎, 𝑏). First, we 
suggest to fit with the method of Maximum Likelihood Estimation (MLE) the rate model to existing 
fluid-induced seismicity sequences; then to use the MLE samples to transform the hyper parameters 
into random variables to model the uncertainties arising from different sites. A significant advantage 
of the Bayesian approach is that it enables uncertainties and expert judgments about the model’s 
parameters to be encoded into a joint prior distribution. In this case, we recommend including expert 
knowledge to determine the bounds of the parameters range. Once the project is started and physical 
information becomes accessible, the Bayesian framework allows the computation of posterior 
distribution for the model’s parameters, the formulation of predictive models and a robust forecasting 
strategy. The inference formulation for the empirical model prosed in this paper, together with the 
predictive model for the number and magnitude of fluid-induced events are reported in detail in 
Broccardo et al. 2017. 

 
Figure 16: Prior and posterior distribution for Basel 2006 dataset. Diagonal: in shaded grey, the prior 

distributions, with red lines the posterior distributions, red dots represent MLE estimates from other 

dates which define the prior distribution. Lower triangular part: joint prior distributions. Upper 

triangular part: joint posterior distributions. Source: Broccardo et al. 2017 

Figure 16 shows the joint prior distribution and the joint posterior after data are available for the Basel 
2006 sequence. Observe then even if we have assumed independence in the prior distribution, the 
posterior distribution encodes the correlation structures emerging from the data, given the observed 
quantity of interest. In particular, in this case, by observing magnitude and number of events we 
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observe a positive linear relationship between the parameters 𝑎 and 𝑏. In the figure, it is also reported 
the parameter 𝜏, which represent mean relaxation time for the post injection phase. As anticipated, 
even if joint prior distribution is defined based on the independence of model parameters the posterior 
shows a strong correlation between activation feedback and earthquake size ratio. Figure 17 shows 
how the posterior distribution evolution as function of time and data acquisition.  

Figure 18 shows the online predictive model for the number of earthquakes and magnitude of events.  

Although the proposed rate model reasonably describes the current datasets, different models (e.g. 
based on geomechanical principles (Gischig and Wiemer, 2013; Catalli et al., 2016; Goertz-Allmann and 
Wiemer, 2012) or an ensemble of different models (Király-Proag al., 2016) can be used without 
changing the structure of the proposed framework. 

 

Figure 17: a) Basel 2006 injection profile, and related seismic sequence; b) Marginal model parameter 

distributions: grey represents prior distributions; c) Evolution over time of the posterior mean and 

maximum a posterior for each model parameter; d) Time evolution of the correlation coefficient 

between the model parameters. Source: Broccardo et al. 2017 

 



DESTRESS 
Demonstration of soft stimulation treatments  

of geothermal reservoirs 
 

14.03.2019 27 

 

Figure 18: Basel 2006 sequence: a) Prediction of the number of fluid-induced events, red bar Bayesian 
credible interval, black dot the observed number of events; b) Distribution of the number of seismic 
events, grey dashed lines credible interval; c) Time series of the magnitude events, red bar asymmetric 
credible interval for the 𝑀𝑚𝑎𝑥, grey stems past seismic events, yellow-red stems observed seismic 
event; d) Red area credible asymmetric interval; e) Full prediction of the number of seismic events; d) 
Full prediction for 𝑀𝑚𝑎𝑥. Source: Broccardo et al. 2017 
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IV. Conclusions 

Finally, it is important to note that decisional protocols should be activity dependent. Indeed, induced 
seismicity related to hydraulic stimulation of geothermal and hydrocarbon reservoirs generally occur 
in direct vicinity of the injection well and with no sensible time lag between injection operations and 
seismicity onset. On the other hand, earthquake triggered by a massive injection of fluids in the 
subsurface (e.g. wastewater injection operations) may occur at several kilometers distance from the 
injection wells (Kearenen et al 2013). In a critically stressed crust the pore pressure perturbation 
generated by such industrial operations may cause the failure of the faults which are favourably 
oriented with respect to the tectonic stress, identifying these faults prior to fluid injection may help to 
mitigate the risk associated with induced seismicity. Within this framework modern tools (such as the 
Adaptive Traffic Light Systems) should be activity-based as well as account for all site-characterization 
(e.g. ground motion prediction) and preliminary assessment, rather than rely only on magnitudes and 
or PGA/PGV as in the classical approaches. Finally, the combination of an adequate monitoring 
infrastructure and advanced processing methods can help to be prepared better and earlier, e.g., 
promptly allowing a progressive reduction of operations and evaluating the system response before 
larger earthquakes may take place. The ATLS has been developed within the DESTRESS project test and 
it is ready to be tested to the DESTRESS demonstration sites of Geldinganes (Iceland) and Bedretto 
(Switzerland). 
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